NSLS-II

Steve Dierker

NSLS-II Workshop

Associate Laboratory Director for Light Sources and Chairman, NSLS

Office of March 15, 2004

Science

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN SCIENCE ASSOCIATES

NSLS: Outstanding Scientific Productivity

Many Scientific Programs Highly Productive & High Impact

- ~ 800 publications per year
- ~ 130 publications/year in premier journals (PRL, Science, Nature, Cell, EMBO J., Nature Str. Bio., Proc. Nat. Acad. Sci, Structure, APL)

Present NSLS

Diverse Science: Users by Field of Research

- Largest groups are materials and life sciences
- Strongest growth in life sciences

National & Regional Resource

2400 Users/year (> 400 academic, industrial, government institutions)

Industry: IBM, ExxonMobil, Lucent, pharmaceuticals

Northeast Macromolecular Crystallography Users

 40% of the nation's users are from the Northeast region, spanning ~100 institutions (according to 2002 BioSync report)

 It is critical for users working on difficult projects to collect data at a nearby facility

 NSLS is well-positioned to serve the needs of the Nation, in particular the Northeast user community

Northeast Nanoscience Users

- 1 DOE BNL Center for Functional Nanomaterials
- 4 NSF Nanoscale Science and Engineering Centers
- 12 NSF Materials Research Science & Engineering Centers (MRSECs) with Nanoscience Interdisciplinary Research Groups (IRGs)
- 4 Other University & Government Nanocenters
- 3 Industrial Nanoscience Efforts

5-10 Year Vision:

Continue as Vital Resource in Northeast

- Beamlines and Endstations are being upgraded
- Scientific and user support staff are being added
- Current Initiatives:
 - Macromolecular Crystallography X25 upgrade, new X29 beamline
 - Nanoscience new X-ray Microprobe, LEEM/PEEM, SAXS beamlines
 - Biomedical Imaging new full-field X-ray microscope
 - Detector development program

National Synchrotron Light Source

- First Dedicated Second Generation Synchrotron and only remaining second generation DOE synchrotron!
- Designed in the 1970's
- Operating Since 1982
- Continually updated over the years
 - Brightness has improved more than 100,000 fold
- However
 - The brightness has reached its theoretical limit
 - Only a small number of insertion devices are possible
- Restricted capabilities of present NSLS are increasingly limiting the productivity and impact of its large user community

10+ Year Vision:

Enable Grand Challenge Science by Providing World Leading Capabilities

What science will users do in 10+ years and what do they need to do it?

- Soft Matter & Biomaterials Workshop April '02
- 8 Workshops at NSLS Users Meeting May '02
- Ultra-high Resolution X-ray Spectroscopy Workshop September '02
- Low Energy Electrodynamics in Solids Conference October '02
- Microbeam Diffraction Workshop January '03
- 6 Workshops at NSLS Users Meeting

 May '03
- Scientific Opportunities in Macromolecular Crystallography at NSLS-II July '03
- NSLS-II Environmental Science August '03
- Strongly Correlated Electrons: NSLS-II and the Future August '03
- Scientific Opportunities in Soft Matter and Biophysics at NSLS-II September '03
- Biomedical Imaging at NSLS-II September '03
- Nanoscience and NSLS-II October '03
- Workshop for NSLS-II March '04

NSLS-II: Ultra-high Brightness Medium Energy Third Generation Storage Ring and IR Ring

Highly Optimized X-ray Storage Ring

Dedicated Enhanced Infrared Ring

X-ray Ring

- 3 GeV, 500 mA, Top-off Injection
- Circumference 620 m
- 24 Cell, Triple Bend Achromat
- 21 Insertion Device Straight Sections (7 m)
- 24 Bending Magnet Ports
- Ultra-Low Emittance $(\varepsilon_x, \varepsilon_y)$ 1.5, 0.008 nm (Diffraction limited in vertical at 10 keV)
- Brightness ~ 10²¹ p/s/0.1%bw/mm²/mrad²
- Flux ~ 10^{16} p/s/0.1%bw
- Beam Size (σ_x, σ_y) 84.6, 4.3 µm
- Beam Divergence (σ_x', σ_v') 18.2, 1.8 µrad
- Pulse Length (rms)11 psec
- Exceptional intensity and position stability
- Upgradeable to ERL operation in future

Infrared Ring

• 800 MeV, 1000 mA, Top-off Injection

BROOKHAVEN
NATIONAL LABORATOR

U.S. DEPARTMENT OF ENERGY

Facility Layout

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

12

Science

U.S. DEPARTMENT OF ENERGY

Siting

13

X-ray Brightness

<u>NSLS</u>	NSLS-II	<u>Gain</u>
X25	U14	3x10 ⁴
BM	U14	5x10 ⁶
BM	BM	10 ²
X1	U40	10 ³
U5	U100	10 ² -10 ³

	<u>NSLS</u>	NSLS-II
# Und	5	21+
# BM	30	24

BROOKHAVEN
JATIONAL LABORATORY
BROOKHAVEN SCIENCE ASSOCIATES

X-ray Flux

<u>NSLS</u>	NSLS-II	<u>Gain</u>
X25	U14	20
BM	U14	300
BM	BM	2
X1	U40	20
U5	U100	2-3

Photon Energy (eV)

NSLS-II: World Leading Brightness

Current NSLS is off this chart at lower values

NSLS-II: World Leading Infrared Brightness and Flux

NSLS-II: New Capabilities

Nanoprobes

Structure, composition, magnetization w/ ~ 10 nm resolution

Diffraction Imaging Reconstructing Real Space Images w/ ~ 2-3 nm resolution

X-ray Photon Correlation Spectroscopy

Studying Dynamics w/ ~ 100 nsec resolution

NSLS-II will provide the high brightness to make these possible

What is the Structure and Function of Molecular Machines?

Bending
Magnet
B ~ 10¹⁵
Protein
(~100 Å)

High brightness is essential for projects with small crystals and large unit cells, such as large asymmetric complexes, particles like ribosomes, and membrane proteins.

NSLS-II will enable:

- Large unit cells (> 1000 Å)
- Small crystals (~10 µm)
- High resolution (< 1.0 Å)

Ion Channel Membrane Protein

Structural Genomics
Genomes to Life

NSLS-II Undulator
B ~ 10²¹

Molecular Machinery

What is the Structure and Function of Molecular Machines?

Biological Imaging will help define the interactions between proteins and other components in the complex interacting networks of living cells

NSLS-II will enable:

- Spectromicroscopy and imaging with <10 nm resolution
- Diffraction limited high brightness from mid- to near- IR

What are the Physical, Chemical, and Electronic Properties of Materials on Nanometer Length Scales?

Biomaterials

Ouantum Dots

Flectronic Devices

Chemical Catalysis

Magnetic Domains

Piezo-Electric Sensors

Carbon Nanotube

NSLS-II will enable:

- < 10 nm x-ray nanoprobe</p>
- **Coherent imaging**
- Time-resolved Speckle Dynamics

How do Proteins Fold and Materials Grow?

Combining NSLS-II, Nanoscience, and Computation

What is the Nature of Charge Dynamics in Strongly Correlated Electron Systems?

Resonant x-ray scattering: a direct structural probe of charge carriers by exploiting the large resonant enhancement and selection rules associated

with core-level resonances

Charge and spin stripes in complex oxides

Abbamonte et al, Science (2002)

NSLS-II will enable:

- Inelastic x-ray scattering with ~ 1 10 meV resolution
- Charge aspects of static stripes
- Coherent x-ray imaging of domain structures and studies of dynamics

How do we Design Catalyst Structures for Controlled Activity and Selectivity?

Single Wall Nanotubes

Metal-organic
Framework Structures

Nanocatalysts, Electrocatalysis, Fuel Cells

in situ characterization of catalytic reactions

Materials for hydrogen storage

NSLS-II will enable:

- Spectromicroscopy with <10 nm resolution
- ullet Chemical kinetics on μsec time scales

How do Materials Behave under Extreme Conditions?

Higher brightness is essential for studies of smaller samples at higher pressures and temperatures relevant for the Earth's inner core.

Time at the indicated temperature (x10³ sec)

Seismic Image of the Earth

Why no earthquakes in the lower mantle?

NSLS-II will enable measurements at higher pressures, temperatures, and magnetic fields, and discovery of new phases and novel materials

NSLS-II Beamlines and Instrumentation

Tentative Insertion Device Beamline Plan

- 5 Macromolecular Crystallography
- 1 X-ray Micro-beam diffraction
- 1 Materials science/time-resolved
- 1 Resonant/Magnetic x-ray scattering
- 4 Soft x-ray undulator beamlines

- 1 Coherent X-ray Scattering
- 1 Small angle x-ray scattering
- 1 Inelastic x-ray scattering
- 2 Superconducting Wiggler (6 beamlines)
- 4 To be determined

Optimized and Unique Endstation Instrumentation

Automation, Robotics **Ultra-High Pressures Ultra-High Magnetic Fields** Very Low Temperatures Advanced, efficient, high thoughput, large area detectors

Detector

NSLS-II Preliminary Project Profile

FTE Years: 531

TEC: \$393M FY04

TPC: \$424M FY04

We need your continued input!

Breakout Sessions

- Inelastic X-ray Scattering
- Infrared
- Macromolecular Crystallography
- SAXS/XPCS

- Nanoprobe/Imaging
- Scattering
- Spectroscopy

Please give us your suggestions on NSLS-II design features, beamline characteristics, instrumentation concepts, and other thoughts!

NSLS-II The Future National Synchrotron Light Source

Enabling "grand challenge" science

